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NOMENCLATURE 

series cocffrcients of problems A, B and C 
respectively; 
eigenfunctions of problems A, B, and C 
respectively; 
eigenvalues of problems A, B, and C res- 
pectively ; 
hydraulic radius, 2R(l - K); 
heat transfer coefEcient ; 
thermal conductivity; 
parameters of the power-law model ; 
Nusselt number, h De/k ; 
flux of energy at the inner surface ; 
radial position ; 
radius of outer cylinder ; 
axial velocity; 
dimensionless velocity; 
axial distance ; 
gamma function ; 
dimensionless radial position, r/R ; 
dimensionless temperature; 
ratio of radius of inner cylinder to radius of 
outer cylinder ; 
dimensionless radial distance at which the 
velocity is a maximum; 
dimensionless axial distance, zk/R2 cPvaT8 ; 
stress tensor. 

entrance condition ; 
inner surface condition ; 
bulk or cup-mixing. 

1. INTRODUCTION 
SEVERAL recent studies [1)-(4] have been devoted to problems 
of heat transfer to Newtonian fluids in laminar flow through 
annuli Problems of heat transfer to non-Newtonian fluids 

in annuh have not, however, been extensively treated. 
Tien [S] and Skelland [6] have considered the limiting 
case of flow between parallel plates. Ziegenhagen [fl has 
obtained an approximate expression for the higher eigen- 
values of the problem of constant heat flux at the inner 
surface which can be applied to non-Newtonian fluids and 
Trefethen [8] has presented Nusse.lt numbers for the fully 
developed temperature region assuming plug flow. 

Heat transfer to non-Newtonian fluids in the thermal 
entrance region of ammli is considered in this note In all 
cases the fluid enters the heat transfer region with a fully 
developed laminar velocity profile and with constant 
temperature T, Results are presented for the boundary 
conditions listed below. 

A. Constant flux at the inner surface, outer surface 
insulated. 

B. Step change in temperature at the inner surface, outer 
surface insulated. 

C. Step change in temperature at the inner surface, outer 
surface maintained at T, 

Inner-outer radius ratios of 0.2 and 0.5 have been studied 
for each of the cases listed. 

The power-law model of non-Newtonian behavior has 
been assumed in all cases For flows with velocity variation 
in only the radial direction the model is, 

r ,r = 

where m and n are constants which must be determined for 
the particular fluid in question Experimental data of 
McEachem [9] indicates that the model predicts pressure 
drop va flow rate data reasonably well if attention is paid 
to the. range of shear stress over which the parameters are 
evaluated. 

The fully developed velocity profile predicted by the 
power-law model for steady lammar flow in au annulus 
has been determined by Fredrickson and Bird [lo] and is 
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given by : 

The two expressions must be the same at { = .J the radial 
position at which the velocity is a maximum, and this may 
be used to determine 1. 

2. EXPRESSIONS FOR THE NUSSELT NUMBERS 

The energy equation for a fluid in steady lamiuar flow 
with constant properties and with the assumptions of 
negligible viscous dissipation and axial conduction may 
be written, 

where % is defined by 

T-T, 
@=- 

d?/k 
for problem A 

and by 

T - Twi 
%=-- T _ T for problems B and C. 

e wt 

The boundary conditions for the various cases are : 
Problem A Problem B Problem C 

KG<<1 
:;;I ‘- 

%=O %=l %=l 

5>0, ;rP 
a%,@[ = 1 %=O %=O 
aejay=o aejag = 0 B= i 

The solutions, which may be found by separation of 
variables, may be written; 

z 

%= c 5 f G(5) Problem A 
;= f 

1 

%= c Problem C 

i=1 

The Nusseh number at the inner surface is defined by, 

(3) 

Converting to dimensionless quantities and substituting 
the above solutions yields ; 

Problem A 

(1 - 4(l - K’) 2 b~~~)expt-~~~) 
Nu = 

*=1 , Problem B 

and for problem C, 

(1 - K)(l - rc2) 
IC 

Cir~JK) w ( - Yft) - & 1 
Nu= 

i= 1 

The Nusselt number at the outer surface for problem C may be expressed as 

(1 - K)(l - ts) E c,~;(Oexp(-$8 - & I 
Nu, = _ 

i=1 
9 
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FIG. 1. Nusselt numbers for problem A. 
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FIG. 2. Nusselt numbers for psobltm B. 
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The first twelve values of the quantities needed have been the Nusselt numbers, It is desirable, therefore. to have a 
calculated and the resulting Nusselt numbers arc shown 
plotted vs. axial distance in Figs 1-3. The curves for n = 1 

simple approx~ma~ solution for this region. Such a solution 

were taken from [l] and [Z]. 
is obtainable from the familiar Leveque procedure which is 

The Nusselt numbers at the inner surface for problem C 
based on the concept that near the entrance the heat has 

are not shown They are identical with those of problem B 
penetrated only a very short distance into the fluid. The 
solutions in terms of a si~l~ty variable may be found in, 

near the entrance but approach values some 12 per cent for example, Bird et al. 1121. 

FIG. 3. Nusselt numbers at outer wall for problem C. 

lower than those of problem B for rc = 0.2 and 15 per cent 
lower for JC = 0.5 in the fully developed temperature range. 

Most of the eigenvalues in the above problems were 
determined by the iterative method of Berry and de Prima 
[ 111, [ 11, though some of the higher values were determined 
by the WKB asymptotic method. When n = 0 (plug flow) 
the solutions were expressed in terms of Bessel functions and 
the eigenvalues determined from tabulated values of the 
functions. 

Very near the entrance a large number of terms are 
needed in the series expressions to accurately determine 

3. DISCUSSION 

The agreement between the complete solutions and those 
valid near the inlet is quite satisfactory for the n = 0 and 
n = 0.5 cases and it is recommended that the approximate 
solutions be used for obtaining Nusselt numbers for values 
of < less than OGOO6. 

Comparing the two solutions when n = 0.2 is dificuh. 
The linearized velocity profile used in the approximate 
solution is valid over only a very smail radial distance, thus 
the approximate solution is valid only a short distance from 
the thermal entrance and a very large number of eigen- 
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OOOOI < t; < 0001. 
The Nusselt numbers for the fully developed temperature 

profiles of problem A are shown in Fig 4. In general, the 
radius ratio is a more signitlcant parameter than the power 
law parameter, n It should be noted that for rc values 
greater than 0.5 the Nusselt numbers will rapidly approach 
those of parallel plates. 

As can be seen from Fig 4 the non-Newtonian velocity 
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